

 CS297 Report

 Online Video Chatting Tool

 Sapna Blesson

 sapna.blesson@yahoo.com

Advisor: Dr. Chris Pollett

 Department of Computer Science
 San Jose State University

 Spring 2008

Table of Contents

Introduction����������������������������..3

Deliverable 1����������������������������4

Deliverable 2����������������������������8

Deliverable 3����������������������������10

Deliverable 4���������������������������...12

Future Work����������������������������14

References����������������������������...15

Introduction
The demand for social networking sites is increasing day by day. A social networking site
that allows you to video chat online is the primary inspiration for my project. The goal of
my project is to build an online video chatting tool that enables users to join real-time
streaming video chat rooms where users can share their video with multiple users. Users
can send instant messages and share their live web cam data to other users in the chat
room. My online video chatting tool will also have methods to add and delete new
members into the access list. It will also support multi-user video conferencing.

Some of the existing video chat applications are stickam,YouCam, ichat, blogtv. My
online video chat tool offers similar functionality like these social networking sites, and it
is simple to execute and doesn�t have to rely on any third party sites. Users can directly
enter webcam chat rooms after signing up. Also this video chat application doesn't
require any additional software installation on the client side.

The main technology used in this project is Flex. Flex is an Adobe product used for the
development and deployment of cross platform, rich Internet applications based on
Adobe Flash platform. Interactivity is achieved through the use of ActionScript.
ActionScript is a scripting language based on ECMAScript. ActionScript supports Video
and Camera classes to process and control the webcam. This project requires Adobe
Flash Media Server which will work as a hub. Adobe Flash Media Server is real time
media server and support client-server architecture. The server can send and receive data
to and from the connected clients using the sever-side ActionScript code. Remote
procedure calls are used to send request between clients and server.

This project report summarizes the research I conducted for the preparation of CS 298.
During my initial phases, I learned about Adobe Flash Media Server and scripting using
ActionScript which are the basic technology for my final project. For my first deliverable
I installed and configured the Adobe Flash Media Server. I also created a sample
application in order to make the server work. So this sample application streams pre-
recorded mp3 file from server to the connected clients. Streaming a file from server to
client is one of the foundation steps for my project. My second deliverable is the first step
towards building an online video chatting tool that make a two way audio/video chat
application that requires one publisher and multiple subscribers. The publisher flash
client publishes the webcam data to the Flash Media Server. The Flash Media Server then
streams the webcam data to the connected subscribers. My third deliverable focuses on
bandwidth experiments of Flash Media Server which are the crucial feature of any video
application. My fourth deliverable deals with load balancing issues of the Flash Media
Server which is an important aspect of online video chatting tool. Finally I concluded the
report with the description of the future work I will be doing as part of CS 298.

Deliverable 1

Streaming recorded mp3 file from Flash Media Server

My main focus of deliverable one was to learn about Adobe Flash Media Server and to
build an application that shows how the server works. Adobe Flash Media Server works
as the central server for my online video chatting tool. One of the main features of Adobe
Flash Media Server is streaming audio/video over the internet. So in my deliverable one,
I created a streaming application that streams recorded mp3 file from server to the
connected clients. Streaming an application from server to connected clients is one of the
key features of online video chatting tool. Deliverable one helped me to build the
foundation for my project.

 Adobe Flash Media Server has client-server architecture. The client code is written using
client-side ActionScript and server side code is written using server-side ActionScript.
Client code is compiled into SWF file.

The server and the client communicate over a persistent connection using Real-Time
Messaging Protocol (RTMP). RTMP is a reliable TCP/IP protocol for streaming and data
services. In a typical scenario, a web server delivers the client SWF file over HTTP. Once
the client starts executing, it creates a socket connection to Flash Media Server over
RTMP. The connection allows data to stream between client and server in real time.

The first step for streaming recorded mp3 file is to establish a connection between the
flash client and the server using RTMP protocol. The client side ActionScript code has
NetConnection and NetStream class that enables the client to establish connection with
server. The server side code has Stream class which creates the stream and plays the pre-
recorded mp3 file stored in the server�s application folder.

//Client side ActionScript code

public var nc:NetConnection = new NetConnection(); //creates NetConnection object

public var subscribe_ns:NetStream;

nc.connect("rtmp://localhost/playmp3"); //connects to server

nc.call("play_mp3", null); //calls server-side function play_mp3

subscribe_ns = new NetStream(nc); //creates NetStream object

subscribe_ns.bufferTime =1;

subscribe_ns.play("myAVStream"); //plays the stream

//Server-side code

application.my_stream = Stream.get("myAVStream"); //creates stream

application.my_stream.play("mp3:music",0,-1); //plays the pre-recorded mp3

Front end of deliverable1

Click the connect button. When it establishes successful connection with server, sucess
status message will be displayed in the panel and after that click the play mp3 button.
Server then starts streaming the mp3 file.

After finishing deliverable 1, I understood the basics of client-server communication of
Flash Media Server.

Deliverable 2

Streaming the output of webcam via Flash Media Server

The first step towards building an online video chatting tool is to make a two way
audio/video chat application that requires one publisher and multiple subscribers. The
publisher flash client publishes the webcam data to the Flash Media Server. The Flash
Media Server has a server-side script which receives the published data and streams back
to the subscribers. The subscribers will play the stream. Deliverable 2 focuses on

streaming the output of webcam via Flash Media Server. The client side ActionScript
code has camera and video class that allows to process and control the webcam data.

//client-side ActionScript code for publishing webcam data

public var nc:NetConnection = new NetConnection();
public var ns:NetStream;
public var video:Video;
public var camera:Camera;

 nc.connect("rtmp://localhost/playpublish1"); //connect to server
 ns = new NetStream(nc);
var mic:Microphone = Microphone.getMicrophone();
 video = new Video(camera.width * 2, camera.height * 2);
 video.attachCamera(camera);
ns.attachCamera(camera); //Give video a ride on the stream

ns.attachAudio (mic); //Give audio a ride on the stream

 myViewer.addChild(video); // Show video in publisher
 ns.publish("livestream", "live"); //publish webcam data

//client-side ActionScript code for subscribing to the webcam data stream

public var nc:NetConnection = new NetConnection();
public var ns:NetStream;
public var video:Video;
public var camera:Camera;

nc.connect("rtmp://localhost/playpublish1"); //connect to server
ns = new NetStream(nc);
video = new Video(320,240);
video.attachNetStream(ns);
myViewer.addChild(video);
ns.play("livestream", "live");

//server-side ActionScript code for streaming the webcam data

application.myStream = Stream.get("livestream");
if (application.myStream){

 application.myStream.play("livestream", -1);
}

The server first gets the published webcam stream from the flash client using
Stream.get(). After that the server broadcasts the live webcam stream to the requested
clients using Stream.play().

Front end of deliverable 2

Publisher publishes webcam stream from client to server

Click connect button. When connection succeeds, click publish webcam button. Flash
client publishes the webcam data to the server.

Subscribers play the webcam stream via Flash Media Server

Clicks connect button and when connection succeeds, click play webcam button. Flash
Media Server streams the webcam data from server to the connected clients.

Deliverable 3

Bandwidth experiments of Flash Media Server

The third deliverable focuses on the bandwidth experiments of Flash Media Server which
are the crucial feature of any video applications. I conducted the experiments using
Adobe Flash Media Development Server free edition. Its license limit allows only up to
10 simultaneous connections.

I experimented with bandwidth of Flash Media Server 3 using deliverable 2 (video chat
application). In this example experiment, there is one publisher which publishes the web
cam data to the server and the server streams this webcam data to nine subscribers. At a
time the server can support 10 simultaneous users.

I experimented with 10 simultaneous connections in local system. I got a graph like this.

Figure: Bandwidth of 10 simultaneous connections in local system.

The first graph shows the total active connections which is 10 in this experiment. The
second graph shows the bandwidth output. Green line is the input bandwidth and blue
and dark blue lines show the output bandwidth and total bandwidth. The graph clearly
shows that as the number of connections increases, bandwidth also increases. The spikes
in the graph show that traffic is spontaneous rather than a smooth flow. The server sends
data to the clients between intervals.

I experimented with 10 simultaneous connections on the same server using two machines
connected through local area network (LAN).

Figure: Bandwidth of 10 simultaneous connections through local area network (LAN).

The above graph shows that connection through LAN causes more congestion. Also the
bytes of data per second are less compared to the connection in local system. So the data
loss is more in this case. The picture quality also degraded.

From these experiments, I concluded that LAN connection can cause more congestion
and for that reason the data transfer is less compared to connection within the local
system. Also the picture quality of LAN connection is poor compared to the connection
within the local system.

Deliverable 4

Load Balancing

Balancing the load among multiple servers is a very important aspect of online video
chatting tool. Deliverable 4 focuses on balancing the load among multiple Flash Media
Servers.

Load balancing can be achieved through different ways. A typical method is
implemented using a caching server which sits between the clients and the servers. All
the clients connect to caching servers and caching server will forward the request to the
application servers. When the caching server services the request, it will make a copy of
the data and store it locally. Next time when the client connects to the caching server, the
caching server can provide the data without requesting the application servers.There can

be multiple application servers behind the load balancer and load balancer can send the
request to the application server in a round robin fashion. There is lots of load balancing
software available in the market. One example of load balancing software is squid.

But there is a potential problem with load balancing soft wares. Those are best fit for
stateless application services. A typical web server is a stateless application service. Each
request to the web server is independent and doesn�t matter which machine services its
request each time. So load balancing is very easily achieved through round robin and all
the details of the multiple servers servicing the requests can be masked from the client.

Flash Media Server can intelligently direct traffic to a multiple server cluster using
server-side scripting. This option is used for multi-way communication applications that
require connections to be routed to a specific server. In the video chat application of the
Flash Media Player there is one publisher and several subscribers. Publisher publishes the
live web cam data to Flash Media Server which then streams the web cam data to
connected subscribers. Both the publisher and the subscriber need to connect to the same
Adobe Flash Media Server instance.

There will be a master Flash Media Server. Master server stores the details of all the
other servers. Publisher client first connect to master server. In the server-side code it
first accepts the client connection. It then checks whether the server capacity is exceeded.
For example the Flash Media Development Server free edition supports only 10
simultaneous connections at a time. So if the total number of clients in the application
exceeds 10, server then creates a new NetConnection object and then connects to the next
server. Then the stream name is attached to a NetStream object and published live. This
way Flash Media Server balances the load among multiple servers.

//server-side code of master server
var nc;
var ns;
application.onConnect = function(client)
{
 application.acceptConnection(client) ;
}

application.onPublish = function(client,livestream)
{

 if (application.clients.length>10)
 {
 trace(�current server fully loaded�);
 nc = new NetConnection();
 nc.connect("rtmp://192.168.0.6/NextSever"); //connect to next server

 nc.onStatus=function (info){

 if (info.code==�NetConnection.Connect.Success�) //connection succeeded
 {

ns = new NetStream(nc);
 trace(livestream.name+ " is up.");
 ns.setBufferTime(2);
 ns.attach(livestream);
 ns.publish(livestream.name, "live"); //master publishes the stream to next server

}}
 }

 else //master server capacity is not exceeded, so it plays the stream
 {
 application.myStream = Stream.get(livestream);
 if (application.myStream){
 application.myStream.play(livestream, -1);
 }
 }
}

Master server maintains a list of all Flash Media Servers. Master Server uses
NetConnection object to connect to other server. All other servers first check whether
their load is full. If their capacity is exceeded, they reject connection from master server.
Otherwise they play the stream that is send from master server to the connected clients. If
the NetConnection fails, the master server picks next server in the list and try to connect
the next server and the so on. If capacity of master server is not exceeded, it plays the
stream to the connected client.

Future Work

For my CS 298 I will extend the deliverables I worked on my CS 297 course. I will create
a video conferencing application, where users can share their video with multiple users.
Users will have the ability to invite new members to view their video. All users will have
to authenticate to join chat rooms. I will create a user interface which looks more similar
to real world video chat applications. The system will also have the capability to share its
work across multiple servers.

The deliverables I worked in this semester helped me to build the foundation for
implementing my final project.

References

[2008] Learning Flash Media Server 3.William B. Sanders. O'Reilly. 2008

[2008] Flex Tutorial from Adobe.
"http://www.adobe.com/devnet/flex/quickstart/coding_with_mxml_and_actionscript/"

[2008] Adobe Flash Media Server. "http://www.adobe.com/devnet/flashmediaserver/"

[2008] Adobe Flash Media Server.�http://livedocs.adobe.com/fms/�

[2008] Adobe Flash Media Server.� http://fmsguru.com/�

[2008] Adobe Flash Media Server. �http://fczone.com/�

[2008] Flash video player sources.http://www.flashstreamworks.com

[2008] Adobe Flash Media Server.
�http://en.wikipedia.org/wiki/Adobe_Flash_Media_Server/�

[2008] Flash Media Server.http://www.sandlight.com/

[2008] Dynamic Stream Switching with Flash Media Server 3.
�http://www.adobe.com/devnet/flashmediaserver/articles/dynamic_stream_switching_pri
nt.html/�

[2007] Programming Flex 2.0. Joey Lott, Chafic Kazoun.O'Reilly. 2007

[2007] Calculating your bandwidth and software needs of flash media server 2.
fms_whitepaper_bandwidth.pdf. Chris Hock. 2007

[2006] Adobe Flex 2: Training from the Source. Jeff Tapper, James Talbot. Pearson
Education. 2006

[2004] Developing Rich Clients with Macro Media Flex. Steve Webster, Alistair
McLeod. Peachpit Press. 2004

[2003] ActionScript Cookbook.Joey Lott.O'Reilly. 2003

